PHOTOCHEMICAL AND THERMAL REACTIONS OF THIONES WITH SUBSTITUTED ALKYNES Hans Gotthardt* and Sonja Nieberl Institut für Organische Chemie der Universität München Karlstrasse 23, D-8000 München 2, BRD

(Received in UK 19 July 1976; accepted for publication 9 August 1976)

The light-induced reactions of 2-thioparabanates or xanthione with elefins offer a synthetically valuable entry into the thietane series^{1,2}. Although the chemistry of thiones is going through a period of rapid growth³, there exist only few studies concerned with the chemical behavior of thiones towards alkynes^{4,5}. In this communication we wish to report on some new excited and ground state reactions of thiones with alkynes.

It is known that the photoreaction of thiobenzophenone with phenylacetylene produces 1,4-diphenyl-1,2-dihydro-2-thianaphthalene⁴. In the case of electron-rich alkynes a second type of reaction, namely the formation of α , β -unsaturated thiocarbonyl compounds, has been observed recently⁵. Surprisingly, we found that the above-mentioned thiones react under $n \rightarrow \pi^*$ excitation with diphenylacetylene in a different manner.

3563

When a degassed benzene solution of 1,3-dimethyl 2-thioparabanate $(\underline{1})$ and diphenylacetylene is irradiated with blue light ($\lambda > 4000$ Å), light-yellow crystals of the spiro compound, $\underline{4a}$, are obtained in 57% yield ($\underline{4a}$: mp 203-204.5°; ir, 1748, 1726 (C=0), 1623, 1595 cm⁻¹ (C=C); uv (dioxane), λ_{max} (lge) = 242.5 (4.60), 348 nm (3.94); NMR (60 MHz, CDCl₃), $\tau = 6.76$ (s, 2CH₃), 3.01-2.39 (m, 10 H); ms (70 eV), <u>m/e</u> = 336 (100%, M⁺), 178 (71, C₁₄H₁₀⁺)). The addition direction of the C=S chromophore in $\underline{4a}$ is supported by the results of several reduction steps. Thus, on treatment with lithium aluminum hydride, hydrochloric acid, Raney nickel, and hydrogen/palladium, $\underline{4a}$ is converted into 1,2-diphenylpropane (5), identical with an authentic sample⁶.

The analogous photoreaction of $\underline{1}$ with ethyl phenylpropiolate affords $\underline{4}\underline{b}$, pale yellow crystals ($\underline{4}\underline{b}$: mp 175-178°; ir, 1750, 1728, 1690 (C=0), 1599, 1592 cm⁻¹ (C=C); NMR, $\tau = 8.79$ (t, $\underline{J} = 7.1$ Hz, CH₃), 6.80 (s, 2 CH₃), 5.80 (q, $\underline{J} = 7.1$ Hz, OCH₂), 2.68-2.27 (m, 3H), 1.92-1.70 (m, 2H)).

We assume that the formation of $\frac{4}{2}$ proceeds via the $^{3}(n, \pi^{*})$ state of $\frac{1}{2}$, the diradical 2, which rearranges to 2 by way of a [1,3] hydrogen shift.

Similarly, the light-induced reaction of xanthione $(\underline{6a})$ with diphenylacetylene using sodium light produces $\underline{7}$ in 91% yield, after recrystallization from methanol ($\underline{7}$: mp 181.5-182.5°; uv (dioxane), $\lambda_{\max}(1g\varepsilon) = 240$ (4.56), 310 (4.06), 344 nm (3.95); NMR, $\tau = 3.17-2.15$ (m); ms, $\underline{m/e} = 390$ (100%, M⁺), 313 (23, M⁺-C₆H₅), 212 (23, M⁺-C₁₄H₁₀), 180 (14, M⁺-C₁₄H₁₀S)).

On the other hand, the photochemical reaction of $\underline{1}$ in the presence of dimethyl acetylenedicarboxylate leads to formation of the 1:2-adduct $\underline{10}$ in 63% yield (10: colorless needles, mp 183-184.5°; ir, 1753, 1740, 1728 (C=0), 1620, $\underline{1594}$ cm⁻¹ (C=C); NMR, $\tau = 7.04$ (s, 2 NCH₃), 6.25 (s, 2 OCH₃), 6.07 (s, 2 OCH₃);

ms, $\underline{m/e} = 442 (100\%, M^+)).$

The mechanism of formation of 10 presumable involves the $^{3}(n, x^{*})$ state of 1, which adds to the substrate with formation of a diradical intermediate, followed by ring-closure to the unstable thiete §. Electrocyclic ring-opening of § leads to the α,β -unsaturated thicketone 2, which in turn reacts with a second molecule of acetylenic ester in a [4+2]cycloaddition step. Similar rearrangements of intermediate thietes to α,β -unsaturated dithicesters and thicamides have recently been observed⁵.

Furthermore, \oint shows an interesting ground state reaction. Thus, the dark reaction of xanthione (\oint in the presence of dimethyl acetylenedicarboxylate proceeds at room temperature with formation of the polycyclic compound 11a as a result of a nucleophilic attack of the sulfur at the electron-peor alkyne,

followed by a nucleophilic substitution of the aromatic ring (11a; 48%) pale orange plates, mp 168-169°; ir, 1730, 1720 cm⁻¹ (C=0); uv (dioxane), λ_{max} (1gs) = 252 (4.15), 288 (3.82), 353 nm (3.87); NMR, $\tau = 6.19$, 6.10 (2s, 2 OCH₃), 4.50 (s, CH), 3.18-2.46 (m, 7 H); ms, <u>m/e</u> = 354 (100%, M⁺)). Structure assignment of <u>11a</u> is based on the conversion to <u>12</u>.

Finally, the ground state reaction of $\frac{6}{2}$ with dimethyl acetylenedicarboxylate yields $\frac{110}{2}$ (21%, mp 145-146°; ir 1740, 1718 cm⁻¹ (C=O); NMR, $\tau = 6.14$, 6.06 (2s, 2 OCH₃), 4.56 (s, CH), 2.98-2.16 (m, 7H)).

These last results are somewhat surprising because in a recent communication it has been reported that the thermal reaction of \oint_{a} with 1-diethylamino-1-propyne leads to an α , β -unsaturated thioamide⁵. An explanation of this distinct behavior in the ground state reactions of \oint_{a} is provided by the different kind of electron density at the alkyne carbon. Electron-rich aminoalkynes prefer the attack with the β -carbon at the thiocarbonyl carbon atom⁵.

All new described compounds gave satisfactory analytical results.

Acknowledgement: This work was supported by the Fonds der Chemischen Industrie.

REFERENCES

- 1. H.Gotthardt and S.Nieberl, <u>Tetrahedron Lett.</u>, <u>1974</u>, 3397; <u>Chem.Ber.</u>, <u>109</u>, in print.
- 2. H.Gotthardt, Chem.Ber., 105, 2008 (1972); 107, 1856 (1974).
- 3. P.de Mayo, Accounts Chem.Res., 2, 52 (1976).
- 4. A.Ohno, T.Koizumi, and Y.Ohnishi, Bull.Chem.Soc. Japan, 44, 2511 (1971).
- 5. A.C.Brouwer and H.J.T.Bos, Tetrahedron Lett., 1976, 209.

6. A.Klages, Ber.Deut.Chem.Ges., 35, 2646 (1902).